Biochemical analysis of the recombinant Fur (ferric uptake regulator) protein from Anabaena PCC 7119: factors affecting its oligomerization state.
نویسندگان
چکیده
Fur (ferric uptake regulator) protein is a DNA-binding protein which regulates iron-responsive genes. Recombinant Fur from the nitrogen-fixing cyanobacterium Anabaena PCC 7119 has been purified and characterized, and polyclonal antibodies obtained. The experimental data show that Fur from Anabaena dimerizes in solution with the involvement of disulphide bridges. Cross-linking experiments and MALDI-TOF (matrix-assisted laser desorption/ionization time of flight) MS also show several oligomerization states of Fur, and the equilibrium of these forms depends on protein concentration and ionic strength. In intact recombinant Fur, four cysteine residues out of five were inert towards DTNB [5,5'-dithiobis-(2-nitrobenzoic acid)], and their modification required sodium borohydride. Metal analysis and electrospray ionization MS revealed that neither zinc nor other metals are present in this Fur protein. Purified recombinant Fur bound to its own promoter in gel-shift assays. Fur was shown to be a constitutive protein in Anabaena cells, with no significant difference in its expression in cells grown under iron-sufficient compared with iron-deficient conditions.
منابع مشابه
The conformational stability and thermodynamics of Fur A (ferric uptake regulator) from Anabaena sp. PCC 7119.
Fur (ferric uptake regulator) is a key bacterial protein that regulates iron acquisition and its storage, and modulates the expression of genes involved in the response to different environmental stresses. Although the protein is involved in several regulation mechanisms, and members of the Fur family have been identified in pathogen organisms, the stability and thermodynamic characterization o...
متن کاملNew insights into the role of Fur proteins: FurB (All2473) from Anabaena protects DNA and increases cell survival under oxidative stress.
Fur (ferric uptake regulator) is a prokaryotic transcriptional regulator that controls a large number of genes mainly related to iron metabolism. Several Fur homologues with different physiological roles are frequently found in the same organism. The genome of the filamentous cyanobacterium Anabaena (Nostoc) sp. PCC 7120 codes for three different fur genes. FurA is an essential protein involved...
متن کاملHeme binds to and inhibits the DNA-binding activity of the global regulator FurA from Anabaena sp. PCC 7120.
Heme is an iron-containing cofactor that aside from serving as the active group of essential proteins is a key element in the control of many molecular and cellular processes. In prokaryotes, the family of Fur (ferric uptake regulator) proteins governs processes essential for the survival of microorganims such as the iron homeostasis. We show that purified recombinant FurA from Anabaena sp. PCC...
متن کاملIsolation and overexpression in Escherichia coli of the flavodoxin gene from Anabaena PCC 7119.
The gene coding for flavodoxin from Anabaena PCC 7119 was cloned by using the polymerase chain reaction (PCR). The gene is transcribed into a 1250-base transcript. The expression of the flavodoxin gene was analysed and found to be regulated at the transcriptional level by the availability of iron. The PCR-amplified gene was cloned into the expression vector pTrc 99b and expressed in Escherichia...
متن کاملOverexpression of FurA in Anabaena sp. PCC 7120 reveals new targets for this regulator involved in photosynthesis, iron uptake and cellular morphology.
Previous genomic analyses of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 have identified three ferric uptake regulator (Fur) homologs with low sequence identities and probably different functions in the cell. FurA is a constitutive protein that shares the highest homology with Fur from heterotrophic bacteria and appears to be essential for in vitro growth. In this study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 366 Pt 1 شماره
صفحات -
تاریخ انتشار 2002